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ABSRACT 
Efficient projective-iterative versions of the finite element method (FEM) are developed to study 
structures with defects in the form of various breakdowns of continuity and inclusions under 
elastoplastic deformation. Corresponding numerical schemes are constructed. Used versions of FEM 
offer a considerable (several-fold) reduction in the time of computation of stress and strain fields in 
such structures. Schemes of successive approximations that account for plastic deformation are 
constructed. Developed calculated schemes may be used for simulation of the behavior various actual 
engineering structures and for diagnostics and monitoring in different problems of maintenance for 
structures with defects. 
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1. INTRODUCTION 
 
Real structures of modern techniques have defects – damages of various types: breakdowns of 
continuity – discontinuities (holes), initial geometrical imperfections et al.  
They have a dominant role for problems of maintenance of structures. The causes of damages 
are different. They appear during both manufacture and service of structures. Occurrence of 
damage is necessarily preceded by loss of homogeneity of stress and strained state. 
The behavior of such systems should be studied with allowance for material nonlinearity 
(plasticity, creep). Plastic deformation adds peculiar effects. Various structures of modern 
technique are plate-shell systems. 
The numerical variational-grid finite element method (FEM) is an efficient numerical method 
for solution of various problems of deformation and critical states of plate-shell structures. 
The projective-iterative schemes of numerical FEM implementation considered in this article 
offer a far (several times) shorter running time, which is of importance in numerical 
simulation of complex process of nonlinear deformations of nonhomogeneous structures. 
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In this report (article) projective-iterative schemes of FEM implementation are the 
elastoplastic deformation of plate structural elements with different holes is studies. Plastic 
zone are determined and hole interaction is investigated. These investigations may be used for 
solution of maintenance problems of various plate-shell structures. 
 
2. THEORETICAL FOUNDATION OF PROJECTIVE-ITERATIVE VERSION 

OF FINITE ELEMENT METHOD 
 
Let a bounded-below functional F(u), ( ) *inf

u
F u F

∈Ω
= > −∞ , be defined on some set Ω of 

Hilbert space. Let it be desired to minimize F(u) on Ω:  
F(u) → inf, u  Ω.                                  (1) 

Consider the variant of the projective-iterative method of solution of the problem (1) which is 
based on the application of the pointwise relaxation method to the solution of a sequence of 
conditional minimization problems [2-5]. 
The basic idea of the projective-iterative FEM version is that the original extremum problem 
(1) is approximated, using the FEM, by a sequence of discrete extremum problems (n = 1, 
2,…) for multivariable functions. Each of the problems, starting with some number n = N, is 
solved by the method of successive overrelaxation using the special procedure. For problems 
where stress concentration occurs, it is advisable to use adaptive grids. For example we 
consider plate with rectangular hole. 
To construct an adaptive grid from rectangular finite elements, the following algorithm is 
used: 
-  in the region ω under consideration, a square grid of spacing hn > 0 (n = N) formed by 

the straight lines xi = ihn, yi = jhn, 0 < i < Nx, 0 < j < Ny , Nx = 2a/hn, Ny = 2b/hn is 
introduced (Fig. 1a); 

-  a zone of assumed stress concentration of length l1 and width l2 is specified (Fig. 1a) and  
an integer d > 0 is specified, and the zone of assumed stress concentration is partitioned 
by straight lines parallel to the Ox and Oy axes spaced by distance hn

d = hn/d (Fig. 1b).  
 

 

 
 

 
Figure 1. Construction of adaptive grid 

 
As a result of these operations, we obtain a finite-element adaptive grid of dimension 

( )( ) ( )( )1 1 1 1x x y yN d C N d C+ + − × + + − ,         (2) 

where xC  and yC  are the numbers of elements in the stress-concentration zone along the Ox 
and Oy axes, respectively; a sequence of nested adaptive grids is obtained by triangulating the 
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finite elements along the Ox and Oy axes with step 1 2n nh h+ =  outside the stress 

concentration zone and with step 1 2d d
n nh h+ =  therein. 

Thus, on each of finite-element grid we will obtain a set of finite elements of different 
dimensions: a square finite element of type I, a square finite element of type II whose sides 
are d times smaller than those of the element of type I, and a rectangular finite element of type 
III whose side ratio is equal to d (Fig. 1b). 
The problem algorithm based on the application of the projective-iterative FEM version on 
the sequence of adaptive grids is as follows: 
- for given geometrical parameters of the problem and a given computational accuracy ε, 

relaxation factor ω, and initial grid spacing hn (n = N), an initial adaptive grid of the 
dimension (9) is constructed; 

- an initial approximation is specified for n = N; 
- the functional of the problem (1) is approximated by a multivariable function, which is 

minimized using the method of successive overrelaxation; 
- the number kn of the approximations to be constructed in the n-th step of the projective-

iterative process is chosen equal to the least integer k that satisfies the inequality 
( ) ( )1k k
n nz z −− ≤ ε , where ( )k

nz  is the approximate solution of the n-th finite-dimensional 

problem; 
- the solution obtained on the n-th adaptive grid is interpolated to a finer (n+1)-th finite-

element adaptive grid and used as an initial approximation to the point of minimum for 
the corresponding multivariable function. 

It is of interest to study the effect of the shape of a finite element on the computational 
efficiency of the projective-iterative FEM-implementation scheme. We consider linear and 
bilinear approximations in the projective-iterative process (accordingly triangular and 
rectangular finite elements) in the problem of determining the stress and strain fields of a 
elastic plate with a rectangular or circular hole [5]. Projective-iterative FEM schemes for 
rectangular and triangular finite elements are developed, and the efficiencies of the 
corresponding computational algorithms are compared. The use of rectangular finite elements 
in the projective-iterative process reduces the running time in comparison with the use of 
triangular finite elements, and the stresses obtained using the above types of finite elements 
differ from one another by no more than 1,7%.  
 
3. SOLUTION METHODS FOR ANALYSIS OF THE ELASTOPLASTIC 

PROBLEMS 
 
Let us give a brief characteristic of solution methods for elestoplastic problems [5,6]. 
In the method of variable elastic parameters (MVEP), an iterative process is constructed, and 
in each approximation an elasticity problem with variable modulus of elasticity E , shear 
modulus G , and Poisson’s ratio ν  is solved. In deformation theory, the following relations 
hold 

( )( )1 1 3i j i j i jE
ε = + ν σ − νσδ , 

( )2 1E G= + ν ,  1
2

G =
ψ

,  1 2
2 1 2
E
E
ψ− + ν

ν =
ψ + − ν

,  3
2

i
i

ε
ψ =

σ
,        (3) 

where i jσ  and i jε  are the stresses and strains, iσ  and iε  are the stress and strain intensities.  
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In a first approximation, we set E E= , 1ν = ν  and determine 1i jσ , 1iσ , 1iε , 1ψ . In a second 

approximation, we determine 2 1 1i iE = σ ε , 2ν  (3) at 1ψ , and so on. The process is run until 
two successive approximations coincide to within a given accuracy, and the points 
determining imσ  and imε  should be close to the deformation curve, 1m mE E −≈ . The 
scheme of successive approximations with the use of the material deformation curve is shown 
in Fig. 2 (σs – yield strength).  
 

 
Figure 2. Scheme of successive approximations for MVEP 

 

In the method of additional loads, additional quantities o
iF  and o

ip  are added to the external 

loads iF  and ip  in the equilibrium equations and boundary conditions: 
e

, 0o
i ii j j F Fσ + + = ; o

i j j i in p pσ = + , 

e

,

11
2

o
i i j

j
F s

G
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟ψ⎝ ⎠⎣ ⎦
;  e11

2
o
i ji jp s n

G
⎛ ⎞

= −⎜ ⎟ψ⎝ ⎠
,           (4) 

where i js  are stress deviators, and the superscript “e” denotes the quantities for an elastic 
body whose deformations are the same as in the elastoplastic body. 
In a first approximation, we set 0o o

i iF p= =  and solve the elasticity problem to determine 
e

1i jσ  and e
1iσ  (on the deformation curve, 1iσ  and 1iε  correspond to e

1iσ ). Then the first-

approximation parameter 1ψ  and stresses e
1i jσ  are determined as 

( ) e
1

1

13
2

i i
i iE

+ ν σε
ψ = =

σ σ
, 

e
e1

1
1 1

11
2 2

i j
i j i jG G

σ ⎛ ⎞
σ = + σ − δ⎜ ⎟ψ ψ⎝ ⎠

.   (5) 

In a second approximation, we solve the elasticity problem with the loads o
iF and o

ip  (4), 

where at 1ψ = ψ , e
1i ji js s=  and further calculations follow the scheme: e e e

1 2 2i j i iσ →σ → ε →  

2 2 2 2,o o
i i iF pσ →ψ → . The process is run until two successive approximations coincide to 

within a given accuracy: ( )1i jm i j m−σ ≈ σ .  

For the method of additional strains, the following relations hold: 
e o

i j i ji jε = ε + ε , e o
i i iε = ε + ε ,  1o

i j i j
E s

E
ψ− −ν

ε = ,   (6) 
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where the superscript “e” means that i jε  corresponds to a fictitious elastic body whose 

stresses i jσ  are the same as in the elastoplastic body. 

In a first approximation, we set ψ = 1/(2G), 0o o
i j iε = ε =  and determine e

1i jσ , e
1i jε , 1iσ , 

( )1 1 13 2i iψ = ε σ . In a second approximation, the elasticity problem with the strains o
i jε  

determined from (6) at 
1

ψ  is solved, and further calculations follow the scheme: e
2i jε →  

e
2 2 22

o
i i jiε →σ →ψ → ε . The process is run until two successive approximations coincide to 

within a given accuracy. 
 
4. ANALYSIS OF ELASTOPLASTIC STRESS-AND-STRAIN STATE FOR PLATE 

STRUCTURAL ELEMENTS WITH DAMAGES IN THE FORM OF HOLES 
 
Consider problems concerning the determination of the stress and strain fields in square plates 
structural element with different shaped holes with due regard given to the elastoplastic 
deformation of the material using both the projective-iterative FEM implementation schemes 
developed and the traditional FEM. Consider a plate with circular and rectangular (quadratic) 
holes. We will apply the variational methods [4,5] using MVEP. As a result, we will obtain an 
iterative process of successive approximations. In each approximation, a nonhomogeneous 
elasticity problem is solved, and the following functional is minimized 

( ) ( )
2 22 1, 2 ,

1 2Ω Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ − ν ∂ ∂⎛ ⎞⎢ ⎥= + + ν + + Ω− +⎜ ⎟ ⎜ ⎟⎜ ⎟− ν ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ x y

G u v u v u vI x y d p u p v dS
x y x y y x

 (7) 

where G , ν  are the variable elastic parameters (3), u, v are the displacements, xp , yp  are 
the displacement and loading vectors projections on the Ox and Oy axes, Ω – the region of 
plate, Г – contour of boundary. 
The strain intensity is  

( )
( )

1 22 2 2
2

2 1 33
3 41

i x y x y xy
⎛ ⎞− ν + ν⎜ ⎟ε = ε + ε − ε ε + γ
⎜ ⎟− ν⎝ ⎠

,                     (8) 

where xε , yε , xyγ  are strains. 
The scheme of successive approximations for MVEP is shown in Fig. 2. Below are the results 
for a square plate composed of D16 aluminium alloy (σs  = 200 MPa). 
On fig. 3 the plastic zones in plate with circular and rectangular (quadratic) holes are shown. 
For fig. 3 a, b the load values q are 130 MPa (from the left) and 145 MPa (from the right).  
The radii of circular holes are 0,02 m and 0,03 m (for fig. 3 a, b respectively). The sides of 
quadratic holes are 0,06 m and 0,04 m (for fig. 3 a, b respectively). The distance between 
centers of holes is 0,12 m. The joining of plastic zones under load equal 145 MPa is realized. 
In this case the carrying capacity falls because of rigidity decrease. This characterizes the 
exhaustion of carrying capacity. It is possible the distributions of stresses xσ  and yσ  in 
various cross-sections of plates to construct [5]. These problems may be solved using the 
method of additional loads too. 
 
 
 



162 

 
 

a 

    
b 

    
 
 

Figure 3. Zones of plastic strains for plate structural elements with two holes. 
 
The calculation of the stress and strain fields for the elastoplastic deformation of the plate 
with these holes at the basis of the computational schemes developed offers a 56-fold 
reduction in running time in comparison with the traditional FEM. 
The solution of the elastoplastic problem for one rectangular or circular hole using analytical 
or finite difference methods differs from the solution based on the FEM by no more than 3%. 
The theoretical solution for the elasticity problem is in good agreement with the experimental 
data obtained using the photoelasticity method. 
Schemes of calculation based on projective-iterative schemes of FEM realizations make 
possible consider several holes of various forms for materials with various deformation 
diagrams.  
 
5. CONCLUSIONS 
 
The projective-iterative schemes of numerical finite element method implementation have 
been proposed. The application of these schemes to the solution of the elastoplastic problems 
of deformation of nonhomogeneous rectangular or another form plate structural element with 
defects in the form of breakdowns of continuity: variously shaped (rectangular, circular, 
elliptic) holes demonstrates their high efficiency in terms of saving running-time in 
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comparison with the traditional FEM; in the various considered problems, their use offers a to 
70-fold reduction in running time. This is of great importance in numerical simulation of the 
deformation and failure of plate-shell structural elements, where one has to solve a large 
number of similar problems using the FEM. 
Elastoplastic deformation is accounted for by the construction of some processes of 
successive approximations. In each approximation, a nonhomogeneous elasticity problem is 
solved using projective-iterative FEM-implementation schemes. These schemes are efficient 
in the study of the elastoplastic deformation of plate-shell systems with holes and other 
nonhomogeneities such as various geometrical imperfections, inclusions, and reinforcements. 
The numerical simulation schemes developed and the computational algorithms implemented 
allow one to study defects (holes) interaction, construct plastic zones and solve the problems 
of carrying capacity. 
Developed calculated schemes may be used for investigation of various behavior problems of 
different engineering structures composed from plates, shells and various thinwalled 
elements. These calculated schemes may be used for monitoring and diagnostics in different 
problems for maintenance of various structures with defects. 
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